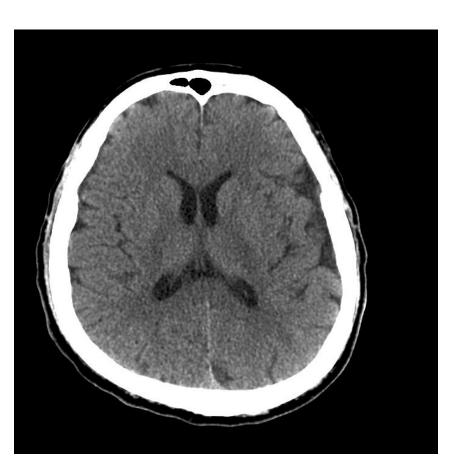
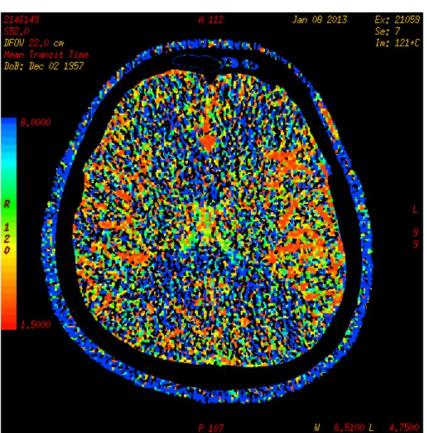
Paul Hsien-Li Kao, MD Associate Professor of Medicine National Taiwan University

A challenging and unfortunate case of carotid stenosis

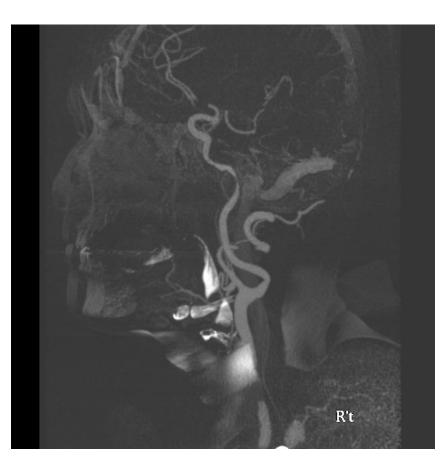
Head/neck radiation and CAS

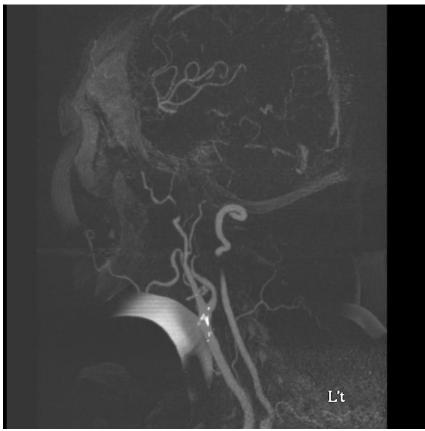
- Patients with head and neck radiation are at high risk for delayed atherosclerotic carotid stenosis/occlusion
- 10-20% at 10 years after exposure to >40Gy
- More diffuse lesion, CCA involvement, and occlusions
- NPC is endemic in south-east Asia


Case history


- 56M dentist
- NPC noted 10 yrs ago, with R/T and cured
- Neuroendocine tumor of left maxillary sinus 2 yrs ago, with C/T+R/T and good tumor control
- Total dosage 130Gy
- CNI, dry mucosa, sclerotic neck, cachexia, gastrostoma for feeding

Current problem


- Frequent TIA of left limbs (1-2 time per week) starting 3 months ago
- Neck Duplex showed left ICA occlusion (distal cervical) and possibly distal right ICA stenosis
- CTA confirmed


Decreased border zone perfusion

RICAS and LICAO

Treatment options?

- Neck radiation has been considered to increase the procedural risk for CE
- But also a procedural risk factor for CS
- Long-term outcome?
- No RCT ever

Early (0-30d) outcome

		Success	Stroke,	TIA,	Procedure-Specific
CAS Group	N, P	Rate, %	No.	No.	Outcome, No.
Tallarita et al ²¹	33, 37	100	2	0	0
Dorresteljn et al ²²	24, 24	100	1	2	0
Sadek et al ²³	19, 19	NA	0	0	Hematoma: 1
Favre et al ²⁴	135,	98	2	1	Hematoma: 4
	149				Technical problems: 13
					Seizure: 1
Younis et al ²⁵	35, 35	NA	NR	NR	NR
Protack et al ²⁶	23, 23	96	2*	•	Hematoma: 1
					Vasospasm: 2
					Bradycardia: 2
Ecker et al ²⁷	5, 5	100	0	0	0
Harrod-Kim et al ²⁸	16, 19	100	1	0	Hematoma: 1
Hassen-Khodja et al ²⁹	13, 13	100	0	0	NA
McKevitt et al ³⁰	17, 17	NA	0	0	NA
Ting et al ²⁰	16, 18	94	1¶	1	Hematoma: 1
					Hypotension: 1
Airic et al ³¹	4, 5	80	0	0	0
Houdart et al ¹⁷	7, 10	100	0	0	Seizure: 1
Al Mubarak et al ¹⁹	14, 15	100	1	0	0

CEA Group	N, P	Stroke, No.	TIA, No.	CNI Initial, No./ Permanent, No.	Procedure-Specific Outcome, No.
Tallarita et al ²¹	27, 29	1	0	6/NA	Wound complications: 3
Frego et al4	8, 8	0	0	1/0†	0
Boules et al ³²	9, 9	NA‡	NA‡	NA	0
Mozes et al ³³	6, 6	NA§	NA§	NA I I	0
Leseche et al ³⁴	27, 30	1§	1	0	Hematoma: 2
Cazaban et al ³⁵	11,11	0	0	2/1	0
Friedell et al ⁹	10, 11	0	0	0	0
Hassen-Kodja et al ³⁶	17, 18	0	0	2/0	Hematoma: 1
Kashyap et al ³⁷	24, 26	0	0	6/0	Infection: 2
Rockman et al ³⁸	10, 14	0	0	0	0
Andros et al ¹⁸	4, 4	0	0	0	0
Atkinson et al ³⁹	7, 9	0	0	2/0	0
Francfort et al ⁴⁰	5, 6	0	1	0	Respiratory problems: 2
Silverberg et al41	7, 9	0	0	0	Postoperative thrombosis:

- Both feasible with acceptable result: CS 3.9% vs. CE 3.5% CVE
- CE is associated with more CNI (9.2%)

Late (>3od) outcome

CAS Group	Mean Follow-Up (Range), Mo	TIA, No.	Stroke, No.	Death, No.	Restenosis, No./ Occlusion, No.
Tallarita et al ²¹	58 (1–132)	0	3	11	6/2
Dorresteijn et al ²²	39.6 (3.6–132)	2	2‡	7	7/0
Sadek et al ²³	9 (0.5–45)	NA	NA	NA	1/0
Favre et al ²⁴	30 (3-95)	3	3	30	18/9
Younis et al ²⁵	24 (6-99)	NA	NA	NA	7/0
Protack et al ²⁶	14.4 (NA)	0	2	2	9/2
Ecker et al ²⁷	9.3 (1-24)	0	0	0	0
Harrod-Kim et al ²⁸	28 (5-78)	0	0	1	4/2
Hassen-Khodja et al ²⁹	18 (NA)	0	0	0	1/0
McKevitt et al ³⁰	1	NR	NR	NR	NR
Ting et al ²⁰	30 (5-55)	0	0	2	3/0
Airic et al ³¹	10 (3–18)	0	0	0	1/0
Houdart et al ¹⁷	8 (3-24)	0	0	0	0
Al Mubarak et al ¹⁹	8 (NA)	0	0	3	0*

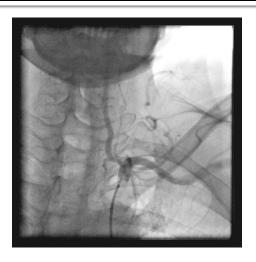
CEA Group	Mean Follow-Up (Range), Mo	TIA, No.	Stroke, No.	Death, No.	Restenosis, No./ Occlusion, No.
Tallarita et al ²¹	58 (1-132)	0	0	3	4/0
Frego et al4	40 (0-156)	0	0	0	0†
Boules et al32	1	NR	NR	NR	NR
Mozes et al ³³	1	NR	NR	NR	NR
Leseche et al34	40 (3-99)	0	0	12	3/0
Cazaban et al ³⁵	1	NR	NR	NR	NR
Friedell et al ⁹	37 (12-60)	0	0	0	0/1
Hassen-Kodja et al ³⁶	52 (12-108)	1	0	4	2/0
Kashyap et al ³⁷	13 (1-156)	0	0	0	2/1
Rockman et al ³⁸	NA	NA	NA	NA	NA
Andros et al18	24.9 (NA)	0	0	1	0
Atkinson et al ³⁹	49 (NA)	0	0	1	0
Francfort et al ⁴⁰	26 (6–48)	0	0	2	0
Silverberg et al41	NA	NA	NA	NA	NA

- More CVE in CS

 (4.9/100 pt-yr) vs. CE
 (2.8/100 pt-yr), p=0.014
- More restenosis in CS
 (5.4/100 pt-yr) vs. CE
 (2.8/100 pt-yr), p<0.003

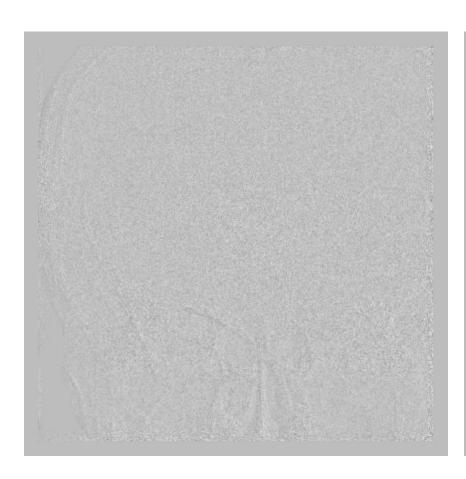
But I quote the authors:

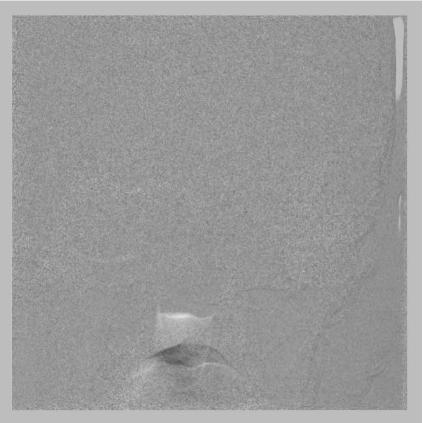
- "We were not informed about the exact preoperative tissue condition"
- "Patient selection must have resulted in differences in outcome, which favored CE, probably because less appropriate surgical candidates were excluded"
- "These results do not indicate a preferred revascularization treatment and therefore, in patients with previous cervical radiation, the choice for revascularization therapy should be considered on a individual basis"


For the present patient

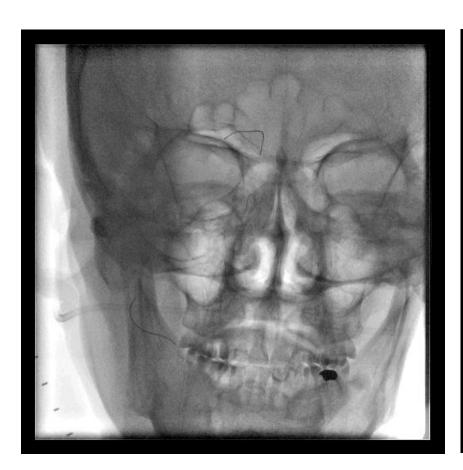
- Very poor tissue condition
- Contralateral occlusion
- Very high lesion location (petrous ICA)
- CS was selected after discussion

Diagnostic images

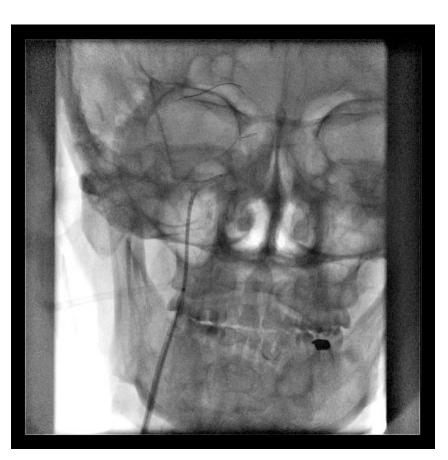




Procedure plan


- 5F STo1 through 8F JR4 guide into RICA from right femoral access
- Distal filter EPD
- Open-cell self-expanding stent
- Routine anticoagulation and DAPT

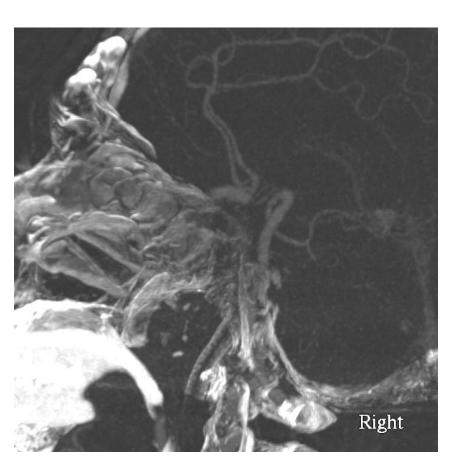
Baseline

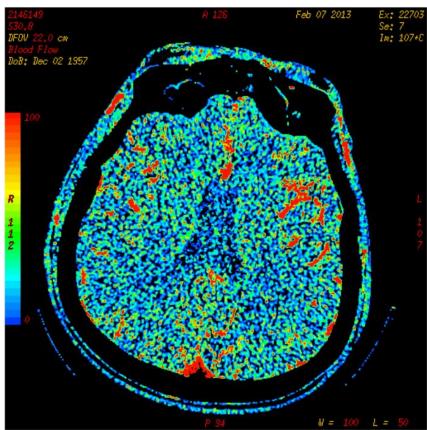


Pre-dilatation under EPD


Stenting and post-dilatation

Final


Post-stenting course


- No more TIA
- DAPT with good compliance
- Groin wound OK
- CTA/P scheduled to see if LICAO recanalization indicated

3 weeks post-stenting

- Left leg weakness recurred
- No definite recovery at ER 3 hours later
- Duplex and CTA showed stent thrombosis with ICA occlusion

RICA ST with decreased perfusion

Treatment options?

- Acute ICA occlusion is associated with extremely poor prognosis, and is less responsive to lytics
- Sub-acute ICA stent thrombosis is rare
- Intra-venous lytic or endovascular?
- Again, no RCT ever

Overall outcome

Table 3. Overall Outcomes From Systemic Intravenous Thrombolysis vs Endovascular Intra-Arterial Treatment

Outcomes	IV Thrombolysis Group (n=385)	Endovascular Group (n=584)	P	OR (95% CI)
Favorable outcome, n(%)	96 (24.9%)	196 (33.6%)	0.004	0.66 (0.49-0.88)
sICH, n(%)	19 (4.9%)	65 (11.1%)	0.001	0.42 (0.24-0.7)
Mortality, n(%)	105 (27.3%)	187 (32.0%)	0.12	0.8 (0.6-1.06)

- More favorable neurological outcome (mRS o-2 at 3m) with endovascular approach, but more ICH
- Same mortality

Better if occlusion is proximal

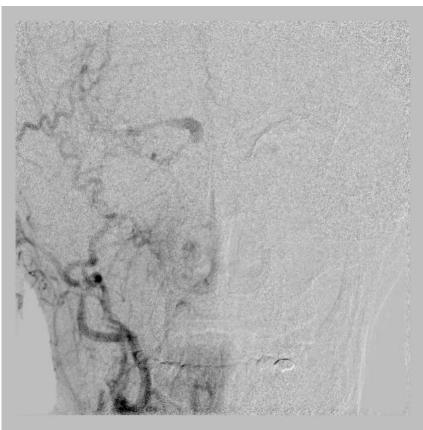
Table 4. Outcomes From Systemic Intravenous Thrombolysis vs Endovascular Intra-Arterial Treatment in Patients With Cervical Internal Carotid Artery Occlusion

Outcomes	IV Thrombolysis Group (n=338)	Endovascular Group (n=193)	P	OR (95% CI)
Favorable outcome, n (%)	89 (26.3%)	84 (43.5%)	< 0.0001	0.46 (0.32-0.68)
sICH, n (%)	13 (3.9%)	22 (11.4%)	0.0011	0.31 (0.15-0.63)
Mortality, n (%)	92 (27.2%)	51 (26.4%)	0.85	1.041 (0.7-1.56)

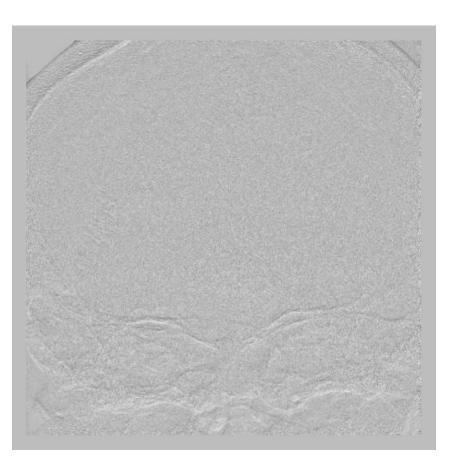
Table 5. Outcomes From Systemic Intravenous Thrombolysis vs Endovascular Intra-Arterial Treatment in Patients With Internal Carotid Artery Terminus Occlusion

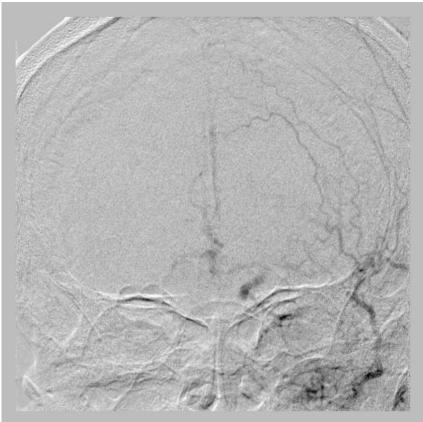
Outcomes	IV Thrombolysis Group (n=26)	Endovascular Group (n=151)	Р	OR (95% CI)
Favorable outcome, n(%)	5 (19.2%)	43 (28.5%)	0.34	0.6 (0.19-1.63)
sICH, n(%)	6 (23.1%)	15 (9.9%)	0.082	2.7 (0.87-7.71)
Mortality, n(%)	8 (30.8%)	45 (29.8%)	0.91	1.047 (0.4-2.58)

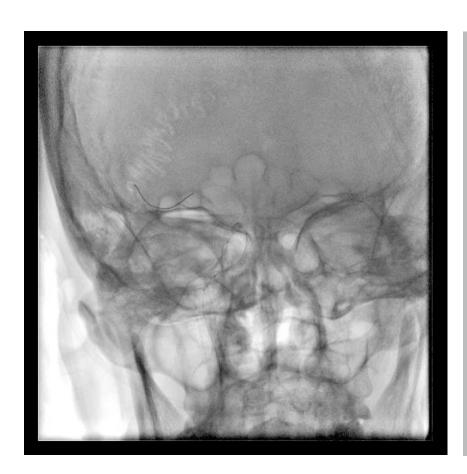
For the present patient


- Neurologist advised endovascular treatment
- Combination of mechanical (aspiration, thrombectomy, angioplasty, stenting) and local pharmacological (lytic, anti-thrombotic) modalities
- Balancing neurological outcome with bleeding

Procedure plan

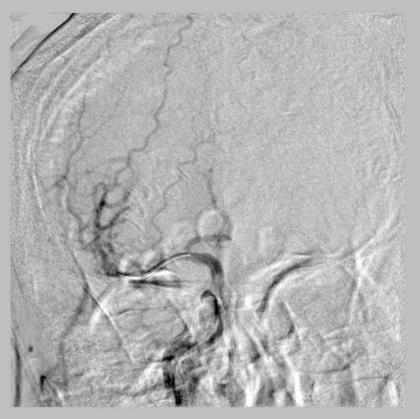

- 8F JR4 into RCCA via femoral access
- Wire through micro-catheter across the occluded stent
- MC injection confirming distal true lumen
- Small balloon angioplasty
- Aspiration catheter
- Small dose rt-PA through MC
- Goal: TIMI 2 flow


RICA occlusion (SST)



LICA occlusion (chronic)

Wire crossing and MC injection


Aspiration and lytic

Flow restored!

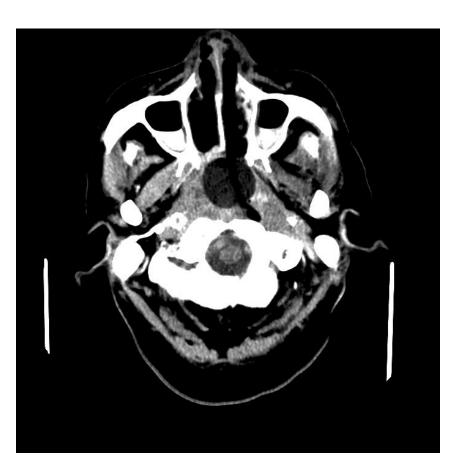




But

- Decreasing BP, HR, and SpO₂
- Consciousness changed from drowsy to unresponsive
- Copious bloody fluid from month and nose

What is wrong?!



Final course

- Massive bleeding from left posterior pharynx jeopardizing airway
- Emergent intubation
- Heparin reversal and transfusion
- Balloon tamponade from left nostril
- Hemostasis achieved on D2, but large infarct ensued
- All in vain, and brain death at D₅

Final CT

Take home message

- Post-radiation ICA disease is a clinical challenge both for surgeon and interventionist, and treatment decision should be tailored individually
- Acute/subacute stent trombosis is rare, but carries high morbidity/mortality
- Endovascular skills and knowledge should be mastered, but practiced with extreme caution and prudence